Definition:
ASPM is a human gene whose defective forms are associated with autosomal recessive primary microcephaly."ASPM" is an acronym for "Abnormal Spindle-like, Microcephaly-associated", which reflects its being an ortholog to the Drosophila melanogaster "abnormal spindle" (asp) gene.
Chromsome: Chromosome 1
Location :1q31
Size of gene:62291bp (195319997 to195382287 complementary)
No Exons :28
No Introns:27
Description:The ASPM gene is the human ortholog of the Drosophila melanogaster 'abnormal spindle' gene (asp), which is essential for normal mitotic spindle function in embryonic neuroblasts.
Evolutionary significance:
A new allele (version) of ASPM appeared sometime between 14,100 and 500 years ago with a mean estimate of 5,800 years ago. The new allele has a frequency of about 50 percent in populations of the Middle East and Europe, it is less frequent in East Asia, and has low frequencies among Sub-Saharan African populations.
The mean estimated age of the ASPM allele of 5,800 years ago, roughly correlates with the development of written language, spread of agriculture and development of cities. Currently, two alleles of this gene exist: the older (pre-5,800 years ago) and the newer (post-5,800 years ago). About 10% of humans have two copies of the new ASPM allele, while about 50% have two copies of the old allele. The other 40% of humans have one copy of each. Of those with an instance of the new allele, 50% of them are an identical copy suggesting a highly rapid spread from the original mutation. According to a hypothesis called a "selective sweep", the rapid spread of a mutation (such as the new ASPM) through the population indicates that the mutation is somehow advantageous to the individual. As of today, there is no evidence to support the notion that the new ASPM allele increases intelligence, and some researchers dispute whether the spread of the allele even demonstrates selection. They suggest that the current distribution of the alleles could be explained by a founder effect, following an out of Africa dispersal. However, statistical analysis has shown that the older forms of the gene are found more heavily in populations that speak tonal languages like Chinese.
Defintion:3-hydroxymethyl-3-methylglutaryl-Coenzyme
Official Symbol:HMGCL
Chromosome:1
Location : 1p36.1-p35
Gene Size: 23583 bp complement(24000954..24024536)
No Exons: 9
Description:
The HMGCL gene provides instructions for making an enzyme that is found in mitochondria (the energy-producing centers inside cells). This enzyme, called 3-hydroxymethyl-3-methylglutaryl-coenzyme A (CoA) lyase, plays an essential role in breaking down proteins and fats from the diet. Specifically, 3-hydroxymethyl-3-methylglutaryl-CoA lyase is needed to process leucine, an amino acid used as a building block in many enzymes and other proteins. This enzyme is also involved in making ketones when fat is broken down by the body. These reactions produce molecules that are later used for energy.
Disease :
Many of the identified HMGCL mutations change the amino acids used as building blocks in the enzyme 3-hydroxymethyl-3-methylglutaryl-CoA lyase. Other mutations cause the production of an abnormally shortened enzyme that is missing critical components. All of these mutations disrupt the normal function of 3-hydroxymethyl-3-methylglutaryl-CoA lyase. As a result, leucine cannot be processed and ketones cannot be made properly. Because of incomplete processing, certain chemical byproducts (organic acids) can build up and cause the blood to become too acidic (metabolic acidosis). In addition, a lack of ketones causes blood sugar to become dangerously low (hypoglycemia). The effects of metabolic acidosis and hypoglycemia can damage the brain and nervous system.
Defintion:Myocilin, trabecular meshwork inducible glucocorticoid response
Official Symbol:MYOC
Chromosome:1
Location : 1q23-q24
Gene Size:17216 Bp (169,871,179 to 169,888,395) Complement
No Exons:3
Description:
The MYOC gene provides instructions for producing a protein called myocilin. Myocilin is found in certain structures of the eye, called the trabecular meshwork and the ciliary body, that regulate the pressure within the eye (intraocular pressure). It is also found in various types of muscle. Myocilin's function is not well understood, but it may help to control the intraocular pressure through its action in the muscle tissue of the ciliary body.
Disease :
Early-onset glaucoma - caused by mutations in the MYOC gene
Approximately 10 percent to 33 percent of people with juvenile open-angle glaucoma have mutations in the MYOC gene. MYOC mutations have also been detected in some people with primary congenital glaucoma.
Mutations in the MYOC gene may alter the myocilin protein so that its interactions with other proteins are impeded. Defective myocilin that is not incorporated into functional complexes may accumulate in the trabecular meshwork and ciliary body. The excess protein may prevent sufficient flow of fluid from the eye, resulting in increased intraocular pressure and causing the signs and symptoms of early-onset glaucoma.
Individuals with mutations in both the MYOC and CYP1B1 genes may develop glaucoma at an earlier age than do those with mutations in only one of the genes.
No comments:
Post a Comment